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Synopsis 

Solutions to  the transient heat conduction equation subject to surface cooling and 
radiant heating are presented. The problem is associated with industrial methods of 
heating semitransparent plastic sheets for thennofonn processing. Three cases are 
detailed : symmetric heating, unsymmetric heating, and pulsed, or “on-off ,” heating. 
The results demonstrate the effects of several parameters on the heating characteristics 
of the sheet. The method employed and solutions presented can serve to optimize 
thermoforming processes. 

INTRODUCTION 

I n  the plastics industry, the thermoforming operation is used to  produce 
drawn profiles of plastic sheets for such applications as signs, skylights, and 
containers. The operation consists of an operator placing a plastic sheet 
between (or beneath) banks of infrared heaters, heating the sheet until he 
believes the sheet is soft and a t  a “forming” temperature, and then lowering 
the sheet onto a mold and applying vacuum to draw the sheet into its final 
form. 

One of the more difficult and perplexing problems confronting thermo- 
form processers is the determination of the temperature throughout the 
thickness of a sheet of transparent or semitransparent plastic as the sheet 
is being radiantly heated to  a working condition. Much guesswork is re- 
quired if the operator has had little experience in thermoforming a semi- 
transparent sheet or is working with a new material. This is particularly 
true if the material is a laminate of semitransparent and opaque materials. 

The purpose of this paper is thc presentation of a sct of analytical solu- 
tions to  the transient heat conduction equation with boundary conditions 
that contain those factors that influence the radiant heating of a semi- 
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transparent plastic sheet. As illustration of the various solutions, the 
transient tempcraturc distributions within a poly(methy1 methacrylatc) 
sheet are given. 

PRIOR WORK 

The principles of radiant hcat transfcr to scmitransparent media reported 
in the literature havc been developed primarily for solution to  problems in 
thc ccramic glass industry. A comprehensivc review of the field, as well 
as prediction of thc ovcrall radiation charactcristics of a semitransparent 
shcet, were given by Gardon in 1956.’ In  a subsequent paper,2 Gardon 
applied these principles through numcrical solution to the detcrmination 
of thc timc-tempcraturc history of a radiantly heated glass sheet. In  
1966, Lich3 prcscntcd a scmianalytical solution for radiant heating of a 
scmiinfinitc body with physical properties that were independent of tem- 
pcrature and radiant u-avclcngth. Percz and Baldo4 and Fowle et al.5 
havc sincc obtaincd numcrical solutions to  the set of equations that describe 
radiant heating of a shcct with variablc thermal properties. 

Thc only work specifically oriented toward plastics is that of Lunka.6 
He assumcd complctc surfacc absorption of thc radiant cncrgy by the 
plastic shcct. Progclhof ct al.*,g have shown that certain plastics, such as 
acrylics uscd as an illustration by Lunka in his paper, do not absorb radiant 
cncrgy solely on the surfacc, but havc appreciable volume absorption. 
Lunka also dctcrmincd thc cffcct of pulsed, or “on-off,” heating and recom- 
mended this method as a way of controlling shcet surfacc temperaturcs. 
Again, howevcr, he assumcd surface absorption of radiant cncrgy. 

THE POSED PROBLEM 

As shown in Figure 1, wc considcr cncrgy transport to a shcct of finitc 
thicltncss, esscntially infinitc in directions perpendicular to  thc thickness. 
Wc assumc that the shcct is exposed uniformly to radiant cncrgy, that thc . 
physical properties of thc shcct arc tcmpcraturc indcpcndcnt, that both 
surfaces of thc shcct arc smooth, and that polarization cffccts arc ncgligiblc. 
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Geometry for heating of a semitransparent sheet. Fig. 1. 
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We assume further that the sheet contains no scattering centers and that 
reflectivity is independent of wavelength. This restriction is not inherent 
in the analysis but was made for ease in calculation. If a material exhibits 
large variations in reflectivity with wavelength, the distribution of energy 
within the sheet will be significantly affected. This can, however, be taken 
into account by simple modifications to  this analysis. The internal and 
external reflectivities are assumed to be equal and determined from the 
index of refraction of the sheet by the Fresnel equation and Snell’s 
Thus, the temperature within the sheet is a function of the spatial co- 
ordinate, x, perpendicular to the sheet surface. 

Energy is transported to  and from the sheet in two ways: First, we 
assume that radiant energy sources, such as rod or filament heaters, are 
used and that the energy distribution on the surface of the sheet is uniform. 
The following heating conditions will be considercd here: case 1, sym- 
metrical heating; case 2, unsymmetrical heating with and without reflec- 
tive presence of th r  environment behind the sheet; and case 3, pulsed, or 
on-off , heating. 

Second, we assume that room-temperature air can be moved across the 
sheet surface. Using this model, we can gain some measure of the effect 
of the heat removal from the surface of the sheet. 

Most radiation analyses assume relatively simple models for absorption 
into the materials.’ The most familiar is the black body material, wherein 
all energy impinging on the surface of the body is absorbed. A second is 
a grey body material. Here, only a fraction of the energy is absorbed by 
the surface of the material, that fraction being independent of the wave- 
length of thc incident radiant energy. Nearly all real materials are neither 
black nor grey bodies. Instead, the absorption of radiant energy is strongly 
wavelength dependent. In  certain wavelength bands, the material may 
behave as if it were a black body, absorbing all incident radiant energy in 
that wavclength band. In  other wavelength bands, the material may 
appear to be totally transparcnt to  incident radiation. Radiation energy 
in this wavelength would pass through the material (regardless of the thick- 
ness of the material) without any loss of strength. 

Thcse are two approaches to analytical solution of complex radiation 
problems. The first develops differential heat balancc into integro-dif- 
ferential equations. The analytical solutions to these equations arc possi- 
ble for relatively simple geometries and boundary conditions. l6  Computer 
solutions are required for more complex physical systems. The second 
approach described herein uses the “two flux” method. Although the 
method utilizes overall heat balances and is, therefore, approximate, the 
equations are more tractable, and more analytical solutions to  pragmatic 
problems can be obtained. As a result, parametric studies can be carried 
out in greater detail, as we shall show. 

The physical property of the material that is used to  identify the degrre 
of opacity or transparency is the absorption coefficient a, sometimes com- 
bined with the sheet thickness (2L) as the extinction thickness 2aL. The 



1230 PROGELHOF, QUINTIERE, AND THRONE 

50 

- - 
SE 10 
1 

0 

+- 
y 
0 
IL 
- 

z e 
0 c 

9 

I 

POLY METHYL METHACRYLATE 

.01 
0 I 2 3 4 5 10 1 5 2 0 2 5 3 0 3 5 4 0  

WAVELENGTH. A ( p )  

Fig. 2. Absorption spectrum for poly(methy1 methacrylate). 

smaller the value of the extinction thickness, the higher the transmittance 
of radiant energy through the sheet. If the value of the extinction thick- 
ness is infinite, the material is said to be opaque to incident radiant energy. 
Conversely, if the extinction thickness value is zero, the sheet is said to  be 
transparent, regardless of its thickness. 

Normally, for a given material the absorption coefficient is a highly ir- 
regular function of the wavelength. The absorption spectra for poly- 
(methyl methacrylate) (Lucitc) and poly(4-methylpentene-1) (TPX) are 
given as Figures 2 and 3, respectively.8 In  order to work with these curves 
in an analytical way, we approximate the curves with a series of step func- 
tions, following Gardon.2 For each step, the absorption coefficient is 
assumed to be constant over a finite wavelength band. This method of 
approximation is demonstrated in Table I for Lucite and TPX. 

For the regions where the absorption coefficient is neither infinite nor 
zero, the material is absorbing radiant energy throughout its volume. 
It is this fact that makes application of the basic principles of heat transfer 
complex and work such as that of Lunka6 of questionable application when 
working with semitransparent sheet. 

Mathematical Model 

The temperature distribution within the sheet shown in Figure 1 is 
described by Fourier's equation with the generation term energy (repre- 
senting volume radiant energy absorption) being treated as a lumped 
parameter that is only a function of the spatial coordinateg z: 
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Fig. 3. Absorption spectrum for poly(4-methylpentenel). 

The boundary conditions that apply depend, of course, on the radiant 
heating condition. For case 1, symmetric heating, 

(2a-1) 

which assumes symmetry a t  the center of the sheet; and 

(2b-1) 

which is a heat balance a t  the surface of the sheet. In  essence, eq. (2b) 
states that conduction within the sheet (the term on the left-hand side of 
the equation) must be balanced by that quantity of radiant energy ab- 
sorbed on the surface (e.g., within the wavelength band where the absorp- 
tion coefficient is infinite) and by the amount of heat added or removed by 
the moving air in contact with the sheet surface (the second term on the 
right-hand side of the equation). Here, of the energy Qs that falls on the 
surface, pQs is reflected (where p is the reflectivity from the sheet surface), 
and the remainder is absorbed. Further, h is the heat transfer coefficient, 
considered here to  be the sum of convective and effective radiative co- 
efficients. . The remaining symbols are defined in the Nomenclature 
section. 

For case 2, unsymmetric heating, 

(2a-2) 



1232 PROGELHOF, QUINTIERE, AND THRONE 

TABLE I 
Step-Function Approximation to Absorption Spectrum 

Wavelength X, microns 
Absorption coefficient 

(I, cm-’ 

Acrylic (Lucite) 
0 -0.4 
0 . 4  -0.9 
0 . 9  -1.65 
1.65-2.2 
2 . 2  - w  

Poly(4-methylpentene-l) (TPX) 
0 -0.3 
0 . 3  -1.6 
1 .6  -2.2 
2 . 2  -2.7 
2.7 -2.9 
2 .9  -4.7 
4 . 7  -5.5 ‘ 
5.5  -12.0 

12.0 -13.5 
13.5 -17.0 
17.0-27.5 
27.5-w 

m 

0.02 
0.45 
2 . 0  
a, 

W 

0.25 
2 . 5  

5 . 0  

5 . 0  

6 . 0  
2 . 5  
5 . 0  
2 . 5  

W 

W 

W 

which is a convective heat balance on the nonradiated side of the sheet, and 

-k @ 1 = -(1 - p ) Q s  + he (2b-2) 
ax -L , f  

which is a heat balance on the irradiated side of the sheet. 

case are 
For case 3, pulsed heating, the boundary conditions for the symmetric 

and 

- k E l  = -(1 - p)QsS(t)+hfl  
ax L , t  

(2a-3) 

(2b-3) 

where 

1, yt, < t < rt, + tl 
0,  rt, + ti < t < (T + l ) t ,  

(r = 0, 1, 2, 3 . .  .) S ( t )  = 

Here, t ,  is the entire “on-off’’ period and tl is the “on” portion of the period. 
Also, Qs should be interpreted here as the radiant flux during the “on” 
time, where S ( t )  is dimensionless. 
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Similarly, for the unsymmctric pulsed case, Qs is multiplied by X in eq. 

The initial condition for eq. (1) is independent of the heating condition 
(2b-2). 

and is given as: 

elz,o = 0. (2c) 

The hcat generation term q ( x )  can be obtained by generalizing Schuster’s 
“two-flux” method.*O For the unsymmetric casc, the equation for q(x) 
depends upon the physical geometry of the system, such as thc presencc of 
an “effcctivc” cxternal reflcctivity ps of the environment behind the sheet. 
If the environment is a black body absorber, ps = 0. Whereas, if it is a 
perfect rcflector, ps is assumed to  be unity. lcor a semitransparent sheet 
with a finitc number of wavclength-independent absorption coefficients 
( N ) ,  the rate of energy generation within a sheet exposed symmetrically to  
radiation is 

N 

i = l  
Q~(z) = C At cash L Y ~ Z  (3-1) 

where 

Here, the wavclength band X i  to  X i  + AXi is thc region where the absorption 
coefficient is finitc. 

For the unsymmetrically heated shcet, this rate of energy absorption 
becomes 

This is obtained in detail in Appendix A. 

where 

This expression is also obtained in detail in Appendix A. 
For case 3, pulsed heating, notc that q3(x) is piecewise-continuous in time 

sincc Q R  is finite for rt, < t < rt, + tl  and zero for rt, + tl  < t < ( r  + l)t, .  
Thc cncrgy generation term q3(2) for casc 3 is given by eqs. (3-1) and (3-2), 
with the above-noted restriction. 

In  order to  prescnt the solution in a more conventional form, thc follow- 
ing dimensionless variables and paramctcrs arc used : 

T = Kt/L2, a dimcnsionlcss time (Fourier no.) 

a dimensionless thickncss 4 = x /L ,  
T - To d =  , a dimensionless temperature 
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hi+bhi lj &RhdX the fraction of radiant energy falling on the 
sheet between the wavelengths X i  + X i  + AXi Fi = 

Q R  

Qi = aiL, a radiant extinction length 

p = p + (1 - p)2ps, a reflectivity parameter 

a radiation parameter for symmetric cases , 23, 
Ti1 = (,Qi - pe-~i)  

--lQi’ a radiation parameter for unsymmetric case Qf 

- PFe 
Ti2 = ,.n< 

the ratio of resistance of the sheet to conduction 
and to convection (the Biot no.) 

The complete solutions to eq. ( l ) ,  subject to  the boundary conditions of 
each of the three cases, are prescnted in detail in Appendix B. Each solu- 
tion is comprised of two parts, a transient part and a steady-state com- 
ponent. I n  case 2, unsymmetric heating, the presence of a reflective 
second surface complicates the solution and the value of the external re- 
flectivity ps becomes important. In  case 3, pulsed heating, the piecewise 
continuous boundary condition requires use of the Duhamel theoremll to 
affect a solution. It can be shown, however, that if TI (the dimensionless 
time for which the heaters are “on”) is allowed to be T (the dimensionless 
period), the solution reduces to the case 1 or case 2 solution, accordingly. 
Further, if TI is set to zero, the solution becomes the solution of a simple, 
transient heat conduction equation.’ 

Implication of Solution Results 

To determine what effect the various parameters have on the temperature 
distribution in the sheet, a series of calculations were made for the poly- 
(methyl methacrylate) sheet. The sheet is assumed to  be 1 cm thick 
( L  = 0.5 cm) and to  have the following physical properties’2 a t  70°F: 

” = hL/kl 

K = 11.7 X cm2/sec 

k = 4.83 X cal/cm sec OK 

The absorption coefficient for the acrylic was idealized as given in Table I .  
The nondimensional time parameter 7 is related to  the actual time by: 

7 = Kt/L2 = 0.2808s 

where t is in minutes. Thus, 7 equal to  1.0 corresponds to a heating time 
of 3.56 min. The heat transfer coefficient h was assumed to be 1, 5, or 20 
Btu/ft2 hr O F .  

Figures 4 and 5 show comparisons of the nondimensional temperature 
distributions for symmetric heating in the acrylic sheet (case 1) as functions 
of the temperature of the primary radiating source for constant Biot 
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Fig. 4. Temperature-time profile for symmetric heating. Source temperature as 
parameter, Bi = 0.1406. 

numbers. Without a loss in generality, the source was considered to have 
a black-body radiant distribution. A cross plot of the data for constant 
source temperature of 1500°F for varying amounts of surface cooling is 
given as Figure 6. From these figures it is evident that source temperature 
and convective film coefficient have marked effects on the uniformity of the 
temperature profiles within the sheets. 

These plots do not indicate the relative magnitudes of the effects. To 
determine the relative degree of temperature uniformity within the sheet, 
another dimensionless parameter, referred to as the “evenness index,” 
EI, is introduced. The evenness index is defined in terms of the material 
temperature, which in turn can be related to the nondimensional tempera- 
ture : 

Tmax - T m i n  - &ax - k i n  EI = - 
Tm, - To &ax 

To determine the effect of source temperature using the evenness index, 
the data of Figure 5 are replotted. These results are shown in Figure 7. 
The trend to more uniform heating with increasing surface temperature 
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Fig. 5. Temperature-time profile for symmetric heating. Source temperature as 
parameter, Bi  = 0.703. 

as indicated in Figures 4 and 5 is clearly seen. This result can be explained 
by the general shape of the spectra1 absorption curve for acrylic. At low 
temperatures, the impinging radiant energy is absorbed solely a t  the surface 
of the sheet. As the source temperature is raised, a greater portion of the 
total incident radiation is absorbed within the sheet rather than at its 
surface. For example, if the source temperature is 500"F, less than 1% 
of the radiant energy emitted has a wairelength in that portion of the spec- 
trum where volume absorption can take place. For a 2000°F source, 
however, 28% of the radiant energy is in the volume absorption portion of 
the spectrum. 

To determine the effect of surface cooling, the data of Figures 4 and 5 ,  
as well as data for Biot number = 2.812, are replotted in terms of the even- 
ness index. These results are shown in Figure 8. The utility of the 
evenness index is now apparent. The data of Figures 4 and 5 indicate that 
an increasing Biot number (e.g., greater surface cooling) produces a more 
uniform temperature distribution within the sheet. However, from Figure 
8, it is now apparent that increased surface cooling has a more complicated 
effect on the temperature distribution. There is a specific time a t  which 
the sheet attains uniform temperature. For times greater than this, the 
temperature of the interior of the sheet becomes greater than the surface 
temperature; thus, the EI increases. This phenomenon can be explained 
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Fig. 6. Temperature-time profiles for symmetric heating. Biot number as parameter, 
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in the following manner: As the surface cooling is increased, a greater por- 
tion of the radiant energy absorbed at the surface is transferred to  the 
surrounding medium. Thus, the net energy transferred into the sheet 
at the surface is smaller. Since changing the rate of surface cooling has no 
effect on the amount of energy absorbed within the sheet, the relative ratio 
of energy absorbed on the surface to volume absorption within the sheet is 
smaller. As the surface temperature of the sheet increases, the net flow 
of energy at the surface will approach zero. This leads to  a uniform tem- 
perature profile. However, the rate of absorbed energy within the sheet 
is constant; thus the internal temperature still increases, resulting in an 
increasing EI.  
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t 

Fig. 7. Evenness index for symmetric heating. Source temperature as parameter. 

Substantiation of these temperature profiles have not been carried out 
in detail to  date. However, one corporation has found that incandescent 
sources (above 4000°K) heat semitransparent sheet faster and more uni- 
formly than do rod heater  source^.^^^'* In  another area, Sliepcevich and 
co-workerslg have found that time to achieve ignition with clear Plexiglas 
increases exponentially with increasing radiation source temperature a t  
constant incident radiant flux, and they thus conclude that a solar furnace 
would probably not ignite their specimen of 1.27-cm thickness. We con- 
clude from this that transmittance and volume absorptance have combined 
to  limit volumetric material temperature. 

An added effect, the presence of the environment, is shown in Figures 9 
and 10 where, for case 2, unsymmetric heating, the nondimensional tem- 
perature distribution in the acrylic sheet is given as a function of “effec- 

1.0 
I 

Fig. 8. Evenness index for symmetric heating. Biot number as parameter. 

0 
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Fig. 9. Temperature-time profile for unsymmetric heating. External reflectivity ps as 
parameter. Sheet thickness, 2L = 0.35 cm. 

tive” mold reflectivity and sheet thickness for constant source tempcra- 
ture, convective film, and sheet thickness coefficient. A cross plot of the 
data, for constant source temperature, heat transfer coefficient, and external 
reflectivity for varying sheet thickness is shown in Figure 11. From these 
figures it is evident that for acrylic, the (‘effective’’ mold rcflectivity has 
relatively little effect, whereas sheet thickness is important. However, 
for a highly transparent material, such as TPX or polystyrene, a greater 
portion of the irradiant energy passes through the sheet, is reflected, and 
passes through the shcct again. The slightly different shape (T = 5.0) of 
the three curves is due to the relative magnitudes of sheet thickness to ab- 
sorption coefficient a. 

To determine the effect of symmetry, the temperature distribution in 
the acrylic sheet for symmetric and unsymmetric irradiation is given as 
Figure 12. Here, the total amount of radiant energy i s  the same in both 
cases. In  Figure 13, the effectiveness of each heating rate is given using 
the evenness index EI as a basis. 

As mentioned earlier, on-off heating during thermoforming of plastic 
sheets is a recommended practice.6 For illustration, the total on-off period 
was assumed to be either 12 or 48 sec (T = 0.05 or 0.20). These values 
were motivated by Lunka’s paper6 in which he used a total period of 15 
sec. With heaters on for 50% of the period for a source temperature of 



1240 PROGELHOF, QUINTIERE, AND THRONE 

Fig. 10. Temperature-time profile for unsymmetric heating. External reflectivity 
ps as parameter. Sheet thickness, 2L = 0.70 cm. 

Fig. 11. Temperature-time profile for unsymmetric heating. Sheet thickness as 
parameter. 
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Fig. 12. Comparison of symmetric and unsymmetric temperaturetime profiles. 
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Fig. 13. Comparison of evenness indices for symmetric and unsymmetric heating. 

1500"F, the corresponding temperature and evenness index arc shown in 
Figure 14 as functions of dimensionless time for the two values of T .  
Note that the maximum temperature is relatively unaffected by the period, 
as might bc intuitively expected. However, the maximum-to-minimum 
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temperature difference is markedly decreased by increasing the period. 
By comparing Figures 13 and 14, it is immediately obvious that unsym- 
metric heating leads to the most uneven form of heating and long-period 
pulsed heating to the most uniform form of heating. This is, again, in- 
tuitively expected. 
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Fig. 14. Temperature and evenness index for pulsed symmetric heating. Total 
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The effect of heating ratio on maximum temperature and EI is shown in 
Figure 15. Here, the “on” period is shown as %yo, 75y0 and lOOyo of the 
total period, T = 0.05. The curves labeled “ ( T ~ / T )  = 1.0” are identical 
to the Case 1 curves of Figures 12 and 13. Note here the dramatic (and, 
again, expected) decrease in temperature with decreasing extent of “on” 
period. 
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Note the very uniform temperature profiles through the sheet in Figure 
16. Comparison of these curves with the case 1 temperature profiles of 
Figures 4 and 5 give theoretical credance to the pragmatic reasons for 
pulscd heating of temperature-sensitive sheets. 

Thc solution to the unsymmetric hcating problem (case 2) can bc used 
with the Duhamel theorcm to generate solutions to thc unsymmetric heat- 
ing problcm with pulscd heating. As a reprcsentativc cxamplc of such a 
solution, Figure 17 shows a comparison of tempcraturc profiles for sym- 
metric and unsymmctric pulscd hcating for a total period of approximately 
4 min and a 50% “on” portion. Comparing this figure with Figure 12, 
which givcs temperaturc profiles for continuous (1007,) “on” portion of 
the total pcriod, it is again obvious that significant flattening of the tem- 
pcrature profile is accomplished by pulsed hcating. 



1244 PROGELHOF, QUINTIERE, AND THRONE 

----> 
1.6 - 
1.5 - 
1.4 - 
1.3 - 
1.2 - ‘1. = 3.0 
1.1 

1.0 

0.9 

-e- 0.0 

0.7 

0.6 

CONCLUSIONS 

An extensive analysis of radiant heat transfcr to a semitransparent sheet 
has bccn described in dctail. Three cams have been analyzcd : symmetric 
heating, unsymmctric heating, and pulsed, or “on-off ,” heating. 

Poly( methyl mcthacrylatc) properties were used for illustration of the 
solutions, which are presented in dimensionless form. Among the im- 
portant rcsults of this analysis wcrc: 

The spectral curve for thc plastic has a strong influence on the tem- 
pcraturc of the radiant source. 

Increasing surfacc cooling (for symmetric heating) increascs the 
tcmpcrature uniformity through the shcct but decreases the overall rate 
of heating, as is expcctcd. 
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Fig. 17. Comparison of temperaturetime profiles for pulsed symmetric and unsym- 
metric heating. 

3. 

4. 

Volumetric radiant absorption is exponential with thickness, and 
thus thick sheets heat much slower than do thin sheets. 

Thc presence of an absorptive or reflectivc wall behind an unsym- 
metrically heated acrylic sheet has little effect on thc shcct temperaturc 
profilc, but might be significant for highly transparent sheets. 

Dccreasing the pcriod of a constant fraction of heating time has 
slight effect on thc maximum temperaturc profile, but markcdly increases 
the cvenness of temperaturc throughout the shect. 

Increasing the fraction of heating time at a constant period increases 
the maximum tcmpcrature. 

The rcsults presented can be used to  optimize the process of thermo- 
forming. 

5. 

6.  

7. 
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From these conclusions, we find strong theoretical support for the current 
practice of air cooling and pulse heating temperature-sensitive sheets of 
scmitransparent materials such as acrylics or polycarbonates. 

Appendix A 

Derivation of Energy Generation Term 
Applying the “ two-flux” method10~1~~1~ to a semitransparent sheet irradiated on both 

sides (case 1) results in two differential equations describing the attenuation of the 
monochromatic energy fluxes: 

whose solutions are 

_ -  - -ail 
dI 
dx 

dJ 
- = cud 
dx 

I = Cle-ai2 

J = C2eai2. 

, The boundary conditions for the symmetric heating model are 

I ( - L )  = (1 - P)&TX + PJ(-L) 

J ( L )  = (1 - P)&TX + PIG). 

(A.la) 

(A.lb) 

(A.3a) 

(A.3b) 

For nonscattering sheet, there is no difference between internal and external refle~tivity.1~ 
Substituting the boundary conditions results in two simultaneous equations for the 
constants C1 and 

CICiL = (1 - P)&T’ + pCzedaiL (A.4a) 

CzeaiL = (1 - p)&Th + pCle-aiL (A.4b) 

Evaluating the constants, 

(1 - p)&q,eaiz 
J =  eaiL - pe-atL * 

The monochromatic rate of energy generation within the sheet is 

QdX) = ai (I  + 4 
ai(l - p)&q cash a i ~  - - 

er.iL - p e - a i ~  * 

(A.5) 

For a sheet with a discontinuous absorption curve with N continuous and finite segments, 
the rate of energy generation is 



SEMITRANSPARENT PLASTIC SHEETS 1247 

Under the assumption of constant absorption coefficient over a finite wavelength and a 
grey body source, this equation reduces to 

N 

i = l  
~I(z) = C Ai cash a i ~  (A.8) 

where 

Here QRX can be used as long as X i  to  X i  + AXi is interpreted as the region where ai is 
finite. 

For case 2, unsymmetrical heating, boundary conditions (A.3a) and (A.3b) become 

Z ( - - L )  = (1 - P ) Z ~  + J ( - - L )  (A.9a) 

and 

J ( L )  = (1 - P ) ’ P Z ( - L )  + pI(L) .  (A.9b) 

Again, substituting these into eqs. (A.2) and solving for CI and CZ, the values for I and 
J are determined: 

- (1 - p)&c,eai(L-z) 
e2a& - P ( P  + (1 - p)2p8)e-2aiL 

( P  + (1 .- P)P,)(I - p)&The-ai(L-z) 
e2aiL - p ( p  + (1 - p)lp,)e-zaiL 

(A.lO) 

J =  

and q&c) becomes, for a grey body source, 
N 

i = l  
q&) = C Di[(l + p )  cosh ai(L - Z) + (1 - p) sinh ai(L - z)] (A.ll) 

where 
X i +  AXi 

Iai = Ji &RXdX; P = p (1 - P ) ~ P .  

and 

ai(1 - ~ Y s i  Di = 
(1 + p p )  sinh aiL + (1 - p p )  cosh ( Y ~ L  

Noting that 

em + Xe-m = (1 + X) cosh ni + (1 - A) sinh m 

we can rewrite (A.11) as 

where 

ai(1 - ~ ) Z s i  . 
Di = e2aiL - ppe-2aiL 

q&), for case 3, pulsed heating, is given by eq. (A.8) or (A.ll), accordingly, wherein 
&RX is multiplied by S. 
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Appendix B 
General Mathematical Solution 

Assume a solution to eq. (1) is of the form 

e(+) = U ( X )  + w ( T , ~ ) .  (B. 1) 

Upon making this substitution into the partial differential equation and applying the 
specific boundary and initial conditions, a set of two coupled differential equations 
results, one of which represents the steady-state component and the other transient 
component of the time-temperature history: 

q ( x )  - + - = 0 (steady-state component) (B.2) dx2 k 

subject to  (case 1) 

(case 2) 

(case 3 will be considered in detail below). 

And 
baw l a w  - - (transient component) 
ax2 K bt 

subject t o  (case 1) 

bw/  = 0 ;  -k = hw(L,t 
ax 0 , t  ax L.t 

(case 2) 

(again case 3 will be considered below). 
Both solutions are coupled through the initial condition on u and w; 

ulz + WlZ.O = 0. 

The solution to  eq. (1) is thus obtained for each case by solving eq. (B.2) subject to the 
specific boundary conditions and definition of q(x) ,  eq. (3.1) or (3.2), solving eq. (B.3)" 
subject to  its specific boundary conditions, and substituting these solutions into eq. 
(B.1). If the dimensionless variables and parameters defined in the text are used, the 
solution to  eq. (l), subject to  case 1 boundary conditions, is 

where 

N 
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yn tanh yn= Bi. 
to case 2 boundary conditions, is 

And the solution (again in dimensionless form) to  eq. (2), subject 

where 

cn = sin yn[Bi + Yn cot ~ n l  

d, = cos yn[Bi - yn tan ynl 

yn tanh yn = Bi 

+ ~i sin y,[p - 1 - eZni + pe-2niI). 

For case 3, pulsed heating, the solution is determined by application of Duhamel's 
For case 1, eq. (1) in dimensionless form theorem" and the results for case 1 and case 2. 

is now written as 

constraint conditions 

7 = 0 ;  

= 0 ;  

r =  1; 

+ = o  

N 
?!! + Si+ - S(T) 1 - c Fi = 0 
at [ i = l  1 

with the dimensionless vai_,bles previously defined. 

case 1 be denoted by +l ( f ,~) .  
equation and boundary condition be represent,ed as 

Duhamel's theorem is now applied, using the solution to  case 1." Let the solution to 
Further, let the nonhomogeneous terms in the governing 

S(T1-4 (€) 
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where 

and 

where 
N 

i= 1 
g = 1 -  CFi. 

Then, according to  Duhamel’s theorem, the solution to eq. (B.6) is 

Differentiating and applying the initial condition yields 

It is further specified that the nonhomogeneous terms in case 1 must be represented a.s 
A ( r ) S ( d )  and gS(7’) and regarded as constant parameters in the solution of 6 1 .  Also, T 

is replaced by T - 7’ .  From the solution to  case 1 eq. (B.4), i t  follows that 

(B.8) 
where an and b are given below eq. (B.4). 

Substituting this into eq. (B.7) and performing the indicated operations yields 

+(E,;7)  = -1 s ( T ’ )  5 anyn2e-Ynz(r-r’) cos (Y,,E)d/ (B.9) 
n=l 

Now, if 

(B.lO) 

i TT + Ti < T < (T + 1)T (T > 0). 
In  a similar fashion, it can be shown that the pulsed heating problem for case 2 follows 

The result is given below (unsymmetrical from Duhamel’s theorem and eq. (B.5). 
pulsed heating) : 
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(B.ll) 

where 

The parameters in R, are the same as those defined below eq. (B.5), and Wn is the same 
as in the previous case. 

Nomenclature 
coefficient, defined in text (DIT) 
function, defined in Appendix B (DIAB) 
coefficient, defined in Appendix A (DIAA) 
coefficient, DIT 
Biot number, hL/k 
coefficients, DIAA 
coefficient, DIAB 
coefficient, DIAA 
coefficient, DIAB 
evenness coefficient, DIT 
fraction of radiant energy in given wavelength band, DIT 
function, DIAB 
convective heat transfer coefficient, cal/cm2 sec°K 
monochromatic energy flux, cal/cm2 sec, moving to right 
monochromatic energy flux, cal/cm2 sec, a t  left-hand surface, DIAB 
monochromatic energy flux, cal/cm2 sec, moving to left 
thermal conductivity, cal/cm sec°K 
sheet half-thickness, ern 
that fraction of radiant flux that is absorbed or reflected at the sur- 
face, cal/cm2 sec 
that fraction of radiant flux that is transmitted into the volume of 
the sheet, cal/cm2 sec 
the total radiant flux, Qs + QT 
heat generation term, derived in detail in Appendix A, for all cases 
time-dependent portion of incident radiant flux, DIAB 
material temperature, OK 
ambient air temperature, OK 
radiant source tempcrature, OK 
time of period for pulsed case, sec 
time of “on” portion of the pulse period, see 
time, sec 
Kt,/L2, dimensionless time of period 
Ktl/L2, dimensionless “on” portion of period 
steady-state nonhomogeneous portion of solution to eq. (1) 
transient homogeneous portion of solution to eq. (1) 

spatial coordinate, measured from center line, cm 

w(x, t )  
W n  function, DIAB 
z 
(11 absorption coefficient, cm-’ 
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Yn 

rli,,rli* 
€ 

e 
K 

x 

.t 
P 
P 
Ps 

V 

7 

4J 

eigenvalue, DIAA 
coefficient, DIAB 
dimensionless radiation parameters, DIT 
temperature, T - To, OK 
thermal diffusivity, cm2/sec 
wavelength of radiation, microns 
coefficient, DIAB 
dimensionless length, X / L  
surface reflectivity 
reflectivity function, DIT 
environment reflectivity (see text) 
dimensionless time, Kt/L2 
dimensionless temperature, DIT 

~ J I ( & T )  solution to case 1, as used in case 3 (see Appendix B) 
Qi radiant extinction length, aiL 

Subscripts 
i refers to wavelength band of finite absorption coefficient 
X refers to monochromatic quantity 
R refers to total incident radiant flux 
S refers to surface absorbed flux 
T refers to transmitted flux 
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